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Abstract

This paper describes several methods for the prediction of jet noise. All but one of

the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while

the other is the jet noise generation model recently proposed by Tam and Auriault.1

In all the approaches some assumptions must be made concerning the statistical prop-

erties of the turbulent sources. In each case the characteristic scales of the turbulence

are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a

k�� turbulence model. It is shown that, for the same level of empiricism, Tam and Au-

riault's model yields better agreement with experimental noise measurements than the

acoustic analogy. It is then shown that this result is not because of some fundamental


aw in the acoustic analogy approach: but, is associated with the assumptions made

in the approximation of the turbulent source statistics. If consistent assumptions are

made, both the acoustic analogy and Tam and Auriault's model yield identical noise

predictions. The paper concludes with a proposal for an acoustic analogy that provides

a clearer identi�cation of the equivalent source mechanisms and a discussion of noise

prediction issues that remain to be resolved.

1 Introduction

The prediction of jet noise has been the object of continuous interest and study since the

introduction of the jet engine for commercial use. The earliest theoretical formulation for

aerodynamic noise was the work of Lighthill2;3 . Lighthill's equation was the �rst example

of an \acoustic analogy." The de�nition of an acoustic analogy, to be used in this paper,

is any aerodynamic noise theory in which the equations of motion for a compressible 
uid

are rearranged in a way that seprates linear acoustic propagation e�ects. By de�nition, this

rearrangement results in a set of equivalent sources that are assumed to be non-negligible in

a limited region of space. In an apparent departure from formulations based on the acoustic

analogy, Tam and Auriault1 have recently developed a jet noise prediction method in which
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the sound sources are modeled explicitly and the propagation of sound from these sources

is described by solutions to the linearized Euler equations. These two aerodynamic noise

theories appear to be very di�erent. In this paper we reconcile these apparent di�erences

and show that if consistent assumptions are made concerning the statistical properties of the

turbulent noise sources, both approaches can yield identical noise predictions. It should be

noted that this reconciliation has only been demonstrated at 90 degrees to the jet axis. The

di�erent approaches could lead to very di�erent results at other angles.

In order to make predictions of the radiated noise it is necessary to describe the properties

of the turbulence. Since a complete simulation of the jet turbulence and the noise it generates

and radiates are too computationally expensive for high Reynolds number jet 
ows, noise

predictions are often based on the solution of the Reynolds-averaged Navier Stokes (RANS)

equations using a k � � turbulence model. Such a solution provides an estimate of the

amplitude of the turbulent velocity 
uctuations as well as a local length scale. Since the k��

solution only provides time-averaged properties, it is necessary to make assumptions about

the statistical characteristics of the turbulence in order to predict the noise radiation that is

an inherently unsteady phenomenon. In particular, the axial two-point cross correlation of

the turbulent sources must be approximated. This correlation may be described in either a

�xed frame of reference or a reference frame moving with the turbulence.

One of the earliest attempts to couple estimates of the statistical properties of the turbu-

lence from a steady 
ow prediction with a noise model based on the acoustic analogy was the

MGB approach developed by Mani, Gliebe and Balsa: see Balsa and Gliebe.4 More recent

extensions have used RANS solutions for the 
ow �eld based on a k � � turbulence model.

This has been referred to as the MGBK method: see Khavaran et al.5 and Khavaran.6 In

developing a solution to the acoustic analogy equations these methods assume a form for the

two-point cross correlation function for the turbulent sources in a moving frame of reference.

Conversely, Tam and Auriault,1 who also use RANS solutions for the 
ow �eld based on a

k � � turbulence model, describe the two-point cross correlation in a �xed reference frame.
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It is shown in this paper that, for the same RANS solution, jet noise predictions made with

the Tam and Auriault model1 give much better agreement with experimental measurements

at 90 degreees to the jet axis than methods based on the acosutic analogy. However, it will

also be shown that this is not due to any inherent 
aw in methods based on the acoustic

analogy: but, is associated with the assumptions made concerning the statistical properties

of the turbulent sources. Both approaches yield identical noise predictions at 90 degrees to

the jet axis if consistent descriptions of the turbulent sources are chosen.

This paper is organized as follows. First a noise prediction formula based on Lighthill's

acoustic analogy is developed. It is denoted here as Model I based on the acoustic analogy.

The features of Tam and Auriault's noise prediction model1 are then described. Another

model based on the solution to Lighthill's equation is then formulated using the solution

procedure of Tam and Auriault.1 This is designated as Model II based on the acoustic

analogy. The reasons for the di�erences between the noise predictions obtained with the

di�erent approaches are discussed and these di�erences are reconciled. Finally, an alternative

form of acoustic analogy is proposed. It is argued that this form allows for the easier

identi�cation of the equivalent noise source mechanisms.

2 Lighthill's Acoustic Analogy: Model I

In this section we develop a prediction scheme based on the solution to Lighthill's equation.

The details of the methodology do not follow those of the MGBK approach exactly. This is

because the focus of the present paper is on noise radiation at 90 degrees to the jet axis, where

mean 
ow/acoustic interaction e�ects are negligible. It is at this angle that the speci�cation

of the source and its assumed relationship to the k � � solutions is best assessed. Also, it

is intended to keep the assumptions made and the level of empiricism used as consistent as

possible between the di�erent schemes described in this paper. So, the possible importance of

the e�ects of anisotropy of the turbulence on the radiated noise, as proposed by Khavaran,6
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is not included. The analysis in this section follows that given by Goldstein7 and Lilley in

Chapter 4 of Hubbard.8 It is repeated in suÆcient detail here to emphasize any assumptions

made and the di�erences with the alternative approaches presented in later sections of the

paper.

Lighthill's equation2 may be written in Cartesian tensor form as,

@2�0

@t2
� c2o

@2�0

@xi@xi
=

@2Tij
@xi@xj

(1)

where Tij is the Lighthill stress tensor given by

Tij = �uiuj + Æij
�
(p� po)� c2o (�� �o)

�
(2)

and primes denote perturbations about the basic state denoted by a subscript o. co is a

constant speed of sound that is sensibly taken to be the speed of sound in the uniform

medium surrounding the source region. ui is the instantaneous velocity vector. Viscous

terms have been neglected in the Lighthill stress tensor. In the subsequent analysis it is

assumed that the departures from isentropic behavior are everywhere small and that the


ow is at relatively low Mach number. Since we are concentrating on noise radiation at 90o

to the jet axis it is also assumed that the primary contributions to the Lighthill stress tensor

involve products of velocity 
uctuations. The terms that are linear in the 
uctuations on

the right hand side of Eqn. (1) should be regarded as terms associated with the propagation

of the sound and be placed on the left hand side of the equation: see Lilley.9 These e�ects

are negligible at 90o to the jet axis so this assumption is reasonable here. So we approximate

the Lighthill stress tensor by

Tij = �su
0

iu
0

j (3)

where �s is the mean density in the source region. In the far �eld the density 
uctuation is
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readily shown to be given by

�0 (x; t) =
1

4�c4o

1

x

Z Z
V (y)

Z
@2

@t2
Txx

�
y; t� jx� yj

co

�
dy (4)

where Txx is the component of the Lighthill stress tensor in the direction of the far �eld

observer and x = jx� yj � jxj.
The far �eld spectral density for the intensity is related to the Fourier transform of the

autocorrelation function of the far �eld pressure.

S (x; !) =
1

2�

1Z
�1

hp0 (x; t) p0 (x; t + �)i
�oco

ei!�d� (5)

where h i denotes an ensemble average. Since, in the far �eld, p0 = c2o�
0 we obtain

S (x; !) =
1

32�3�oc5ox
2

1Z
�1

Z
V (y1)

Z
V (y2)

�
@2Txx
@t2

(y1; t1)
@2Txx
@t2

(y2; t2)

�
ei!�dy1dy2d� (6)

where

t1 = t� jx� y1j
co

(7)

t2 = t+ � � jx� y2j
co

(8)

If the turbulent statistics are assumed to be stationary and the usual far �eld approximation

is made we obtain,

S (x; !) =
1

32�3�oc5ox
2

1Z
�1

Z
V (y1)

Z
V (y2)

@4

@� 4
hTxx (y1; t)Txx (y2; �o)i ei!�dy1dy2d� (9)
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where

�o = t+ � +
x

x
� (y2 � y1)

co
(10)

The two{point cross correlation function of the Lighthill stress tensor in a �xed reference

frame may be denoted by,

Rf (y1;�; �) = hTxx (y1; t)Txx (y2; t+ �)i (11)

where � = y2 � y1, then,

S (x; !) =
!4

32�3�oc5ox
2

1Z
�1

Z
V (y1)

Z
V (�)

Rf (y1;�; �) exp

�
i!

�
� � x

x
� �
co

��
dy1d�d� (12)

As noted by Lighthill2;3 and others, it is best to include as many properties of the source

as possible prior to any modeling of the turbulent sources. To include the e�ects of source

convection the statistical properties of the sources may be described in a moving frame of

reference. This also has the advantage that it is the temporal variation in this frame that

controls the noise radiation. In a �xed reference frame, the temporal variation is dominated

by convection e�ects. For example, as noted by Goldstein,7 a frozen pattern of turbulence

convecting subsonically would radiate no noise. However, its local time variation would

depend on the convection velocity and the turbulent length scales and would not be zero.

Let

� = � � icoMc� (13)

where, i is a unit vector in the direction of the mean 
ow and Mc is the convection Mach

6



number of the turbulent eddies. This gives

S (x; !) =
!4

32�3�oc5ox
2

1Z
�1

Z
V (y1)

Z
V (�)

exp

�
i!

�
(1�Mc cos �) � � x

x
� �
co

��
�

Rm(y1; �; �)d�dy1d� (14)

where Rm denotes the two-point cross correlation function of the Lighthill stress tensor in

the moving reference frame. Also,

cos � = x1=x (15)

The wavenumber/frequency spectrum of the turbulent sources is given by

H (y1;�; !) =
1

(2�)4

Z
V (�)

1Z
�1

ei(!�����)Rm(y1; �; �)d�d� (16)

where � is a wavenumber vector. This describes the spatial and temporal periodicity of the

source. Then,

S (x; !) =
�!4

2�oc5o

1

x2

Z
V (y1)

H

�
y1;

!x

xco
; ! (1�Mc cos �)

�
dy1 (17)

This shows that the far �eld noise depends on the components of the source wavenum-

ber/frequency spectrum with a wavenumber that gives a sonic velocity in the direction of a

far �eld observer and at a Doppler shifted frequency.

To this point, other than the far �eld assumption, no approximations have been made.

However, to proceed further, it is necessary to introduce a model for the two point cross

correlation. It is usually assumed that, in the moving frame of reference, the correlation
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takes on a Gaussian form (see Ffowcs Williams10 and Lilley8),

Rm(y1; �; �) = A2�2su
4
s exp

"
�j�j

2

`2s
� !2

s�
2

#
(18)

where, `s is a characteristic length scale, !s is a characteristic frequency in the moving frame,

us is a velocity scale that characterizes the turbulent velocity 
uctuations, and A determines

the magnitude of the correlation. Here, it assumed that the characteristic length scale is the

same in all directions. This restriction could easily be relaxed. It should be noted that this

is simply a model for the turbulent statistics in a moving reference frame. It is not an exact

relationship. Then,

H

�
y1;

!x

xco
; ! (1�Mc cos �)

�

=
A2

(2�)4
�2su

4
s

�2`3s
!s

exp

(
�!2 (1�Mc cos �)

2

4!2
s

)
exp

(
�(�`s)

2

4

)
(19)

where, � is the magnitude of the wavenumber vector. Now,

�`s =
!s`s
co

� us
co
� m (20)

where m is a characteristic Mach number for the turbulence and provides a measure of the

compactness of the source region. For compact sources, m << 1, so that at 90 degrees to

the jet axis we obtain,

S (x; !) =
A2

32��oc5ox
2

Z
V

�2su
4
s`

3
s!

3
s

�
!

!s

�4

exp

�
� !2

4!2
s

�
dy1 (21)

If a RANS k � " solution is available it is possible to determine the contribution of each

elemental volume in the numerical grid to the radiated noise spectrum. Here, k and � are

the turbulent kinetic energy and visous dissipation rate per unit mass respectively. From
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equation (21) this contribution is given by

dS (x; !) =
A2

32��oc5ox
2

(
�2su

4
s`

3
s!

3
s

�
!

!s

�4

exp

�
� !2

4!2
s

�)
dV (22)

The length and time scales may be obtained from the k � " solution. We assume that

!s = 2�=�s; �s = c� (k=�); and `s = c`(k
3=2=�): (23)

The k� � solutions indicate that, along the location of maximum shear, both �s and `s vary

nearly linearly with axial distance. Then, with us =
p
2k=3,

dS (x; !) =
A2c3`
c3�

�2

9�oc5ox
2

(
�2sk

7=2

�
!

!s

�4

exp

�
� !2

4!2
s

�)
dV (24)

In this form there are only two combinations of constants that may be determined by com-

parison with experiments. The factor

�
!

!s

�4

exp

�
� !2

4!2
s

�
(25)

describes how each volume element contributes to a range of frequencies about the local

characteristic frequency !s.

Figure (1) shows a comparison of the predicted radiated noise with experimental data

by Tanna et al.11 The one-third octave experimental data have been converted to spectral

density assuming a smooth spectrum. The jet is operating atMj = 0:911 and Tj=To = 0:975.

The jet diameter is 0:0508 m and the observer location is at 90o to the jet axis at a distance

of 72 jet diameters. The k� � solution has been obtained using the code developed by Thies

and Tam.12 The grid is described by Thies and Tam.12 It grows in physical size in a stepwise

manner as the solution is marched in the axial direction. For the present calculations the

solutions are saved at every quarter of a jet diameter downstream. The volume of the
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elements is determined by the radial grid spacing, with a constant axial spacing and an

axisymmetric assumption. The coeÆcients used in the noise predition are c� = 1:43 and

A2c3` = 1:93 � 10�2. The predicted spectrum has been matched to the measured spectrum

at the peak frequency. The predicted frequency variation of the spectrum increases as f 2 at

low frequency and decreases as f�2 at high frequencies. The much faster decay at very high

frequencies is due to the lack of resolution in the 
ow prediction near the nozzle exit. It

is clear that the behavior of the experiments is quite di�erent. The experimental variation

of the spectral density increases approximately with f at low frequency and decreases as

f�1 at high frequencies. Figure (2) shows how each axial slice of length Dj of the

jet contributes to the total spectrum. The spectral shape of the contribution of each axial

slice is determined by Eqn. (25). The slices near the jet exit provide the high frequency

contributions to the spectrum and the peak frequencies of the spectra decrease monotonically

in the axial drection. It is clear that this spectral distribution is unable to provide suÆciently

high levels away from the peak, particularly at low frequencies.

3 Tam and Auriault's Method

In a recent development, Tam and Auriault1 developed a model for noise radiation from

\small-scale" turbulence. As the name suggests, this model, they argued, accounts for the

noise radiation by the small-scale components of the turbulence. In an earlier paper, Tam

et al.13 had shown how experimental noise data for a wide range of jet operating conditions

could be correlated extremely well with two shapes of spectral density function. One, with

a well-de�ned peak and relatively rapid decay at high and low frequencies, was associated

by Tam et al.13 with noise generated by the large-scale structures in the turbulence. This

spectrum matched the experimental noise data at small angles to the jet axis (including the

peak noise direction). The second spectrum shape was much broader, similar to the measured

spectrum shown in Fig. (1). This they associated with noise from the small scale turbulence
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and it matched the measured spectrum at larger angles to the jet axis. Tam and Auriault1

argue that their noise prediction model provides a description of the latter mechanism. It

should be noted that there is no direct evidence that these two separate mechanisms are

actually responsible for the total noise radiation: but, the experimental correlations and the

success of the model can not be overlooked.

Before providing some of the details of Tam and Auriault's analysis, it is useful to summa-

rize the di�erences between the model of the previous section based on the acoustic analogy

and Tam and Auriault's model as well as the di�erences in the development of a prediction

formula for the far �eld noise. Firstly, the Lighthill equation is based on the full equations

of motion whereas Tam and Auriault's model contains a heuristic argument to describe the

noise source and uses the linearized Euler equations to describe the propagation of sound

generated by the model sources. In the model based on the acoustic analogy it is assumed

that the source is compact and the two-point cross correlation function for the source is

modeled in a moving reference frame. The Green's function in the model based on the

acoustic analogy is simply the free space Green's function for the wave equation. In Tam

and Auriault's method1 there is no explicit assumption concerning the compactness of the

source, (though compactness is implied at one point), the two-point cross correlation func-

tion is formed in a �xed frame of reference, and the Green's function is obtained from the

adjoint solution of the linearized Euler equations. A �nal di�erence between the two formu-

lations is that the far �eld noise depends on a model for the cross correlation of the Lighthill

stress tensor in the model based on the acoustic analogy and on the cross correlation of the

convective derivative of the source term in Tam and Auriault's model. The consequence of

this di�erence is examined in a later section of this paper.

In Tam and Auriault's model1 it is proposed that the small scale turbulence generates a

local pressure 
uctuation that is proportional to the local turbulent kinetic energy per unit
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volume. Tam and Auriault note that, in the kinetic theory of gases, the pressure is given by

p =
1

3
mn hv � vi = 1

3
�


v2
�

(26)

where v is the random molecular velocity, � is the density of the gas, and h i denotes an
ensemble average. Invoking a direct analogy, the small scale turbulence is considered as

small blobs of 
uid that interact in each element of the turbulent 
ow. They argue that the

resulting pressure is related to the kinetic energy of the �ne-scale turbulence. That is,

pturb = qs =
1

3
�


v2
�
=

2

3
�ks (27)

where ks is the kinetic energy of the small-scale turbulence per unit mass. It is argued that

once sound is generated by these local pressure 
uctuations, the propagation of the noise

may be described by the linearized Euler equations with a \source" term on the right hand

related to the 
uctuating pressure gradient generated by the �ne-scale turbulence. That is,

�

�
@u0i
@t

+ uj
@u0i
@xj

+ u0j
@ui
@xj

�
+

@p0

@xj
= �@qs

@xi
(28)

where, an overbar denotes a mean quantity and u0i and p
0 denote acoustic �eld variables. The

sound waves are also assumed to satisfy the linearized equations of energy and continuity

and the equation of state for a perfect gas. That is,

@p

@t
+ uj

@p

@xj
+ 
�p

@ui
@xi

= 0 (29)

Tam and Auriault1 then write the component equations in cylindrical polar coordinates

(r; �; x) and assume that the mean 
ow is parallel.

Rather than converting the operators on the left hand sides of Eqns. (28) to (29) into the

Lilley equation,9 Tam and Auriault1 make use of the adjoint equation. This is a very elegant
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approach to describe the mean 
ow acoustic interaction e�ects. A complete development for

three-dimensional mean 
ows is given by Tam and Auriault.14 Tam and Auriault1 show that

the periodic Green's function for the linearized Euler equations is related to the solution of

the adjoint Euler equations by,

p̂1 (xo;x1; !) = ua (x1;xo; !)

p̂2 (xo;x1; !) = va (x1;xo; !) (30)

p̂3 (xo;x1; !) = wa (x1;xo; !)

p̂n for n = 1; 2; 3 are the Green's functions for sources in the x, r, and � components of

the linearized momentum equations respectively and. ua, va, and wa are the solutions to the

adjoint linearized momentum equations. Note the reciprocal dependence on xo and x1. The

adjoint equations may be written,

��

�
i!ua + u

@ua
@x

�
+ 
�p

@pa
@x

= 0 (31)

��

�
i!va + u

@va
@x

� d�u

dr
ua

�
+


�p

r

@ (par)

@r
= 0 (32)

��

�
i!wa + u

@wa

@x

�
+


�p

r

@pa
@�

= 0 (33)�
i!pa + u

@pa
@x

�
+

�
1

r

@ (var)

@r
+
1

r

@wa

@�
+

@ua
@x

�
= � 1

2�
Æ (x� xo) (34)

With the Green's functions known, the general solution is given by the convolution of

the Green's functions, or adjoint solutions, with the source terms. That is,

p0 (x; t) = �
ZZZZZ

fr1 � [ua (x1;x; !) qs (x1; t1)]

�qs (x1; t1)r1 � [ua (x1;x; !)]g � exp [�i! (t� t1)] d!dt1dx1 (35)
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where

r1 �
�

@

@x1
;
@

@r1
;
1

r1

@

@�1

�
(36)

and

ua (x1;xo; !) = [ua; va; wa] (x1;xo; !) (37)

However, the divergence of the adjoint velocity is known from the equation for the adjoint

pressure pa, given by Eqn. (34). Also, qs is zero at the source point for the adjoint solution,

so that

p0 (x; t) = �
ZZZZZ �

i!pa + u
@pa
@x1

�
(x1;x; !) qs (x1; t1) exp [�i! (t� t1)] d!dt1dx1 (38)

or,

p0 (x; t) = �
ZZZZZ �

@

@t1
+ u

@

@x1

�
fpa exp [�i! (t� t1)]g qs (x1; t1) d!dt1dx1 (39)

It is important to note that, at this stage of the analysis, the convective derivative acts on

the adjoint solution. However, integration by parts yields,

p0 (x; t) =

ZZZZZ
[pa (x1;x; !) exp [�i! (t� t1)]]

D

Dt1
fqs (x1; t1)g d!dt1dx1 (40)

where the convective derivative is given by

D

Dt1
�
�

@

@t1
+ u

@

@x1

�
(41)

The spectral density for the intensity is then obtained by forming the autocorrelation for

the pressure and taking it's Fourier transform, as given in Eqn. (5). The spectral density is
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then found to be given by

S (x; !) =
1

�oco

ZZZ
� � �
ZZZ

pa (x1;x; !1) pa (x2;x; !2)

�
D

Dt1
fqs (x1; t1)g D

Dt2
fqs (x2; t2)g

�
� exp [�i (!1 + !2) t+ i!1t1 + i!2t2] Æ (! � !2) d!1d!2dt1dt2dx1dx2 (42)

Again, as in models based on the acoustic analogy, it is necessary to make some assumption

about the correlation function for the source terms. Based on experimental measurements

of the two-point cross correlation of the axial velocity 
uctuations in a �xed reference frame,

Tam and Auriault1 assume that

�
D

Dt1
fqs (x1; t1)g D

Dt2
fqs (x2; t2)g

�
=

q̂2s
c2� 2s

exp

�
� j�j
�u�s

� 1

`2s

�
(� � �u�)2 + �2 + �2

��
(43)

where,

� = x1 � x2; � = y1 � y2; � = z1 � z2; � = t1 � t2 (44)

It should be noted again, as in Model I, that this is a major assumption and it is only

supported indirectly by experimental measurements. In addition, the turbulent statistics

are modeled in terms of the cross correlation of the convective derivative of the source. This

is shown below to be a crucial choice in the formulation.

Following the sequence of integrations given by Tam and Auriault1 it is straightforward

to show that

S (x; !) =
2�
p
�

�oco

ZZZZZZ
pa (x1;x;�!) pa (x2;x; !)

q̂2s
c2� 2s

`s
�u

� exp

�
�!2`2s
4�u2

�
exp

�
� j�j
�u�s

+ i!1
�

�u
� 1

`2s

�
�2 + �2

��
dx1dx2 (45)

Tam and Auriault1 argue that the di�erence between pa (x1;x;�!) and pa (x2;x; !) is a
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simple phase factor such that

pa (x1;x;�!) ' pa (x2;x; !) exp

�
�i !

a1
cos � (x1 � x2)

�
(46)

� is the polar angle measured from the downstream jet axis. This implies that the sources

have a limited spatial extent. That is, the length scale `s is small compared to the total

extent of the source region. Thus, this model would not be appropriate for large scale or

non compact sources. They also note that,

pa (x2;x;�!) = p�a (x2;x; !) (47)

The integrations with respect to x1 may now be replaced by integrations with respect to

the separation distance � = x1 � x2 The spectral density is then found to be given by,

S (x; !) =
4�2

p
�

�oco

ZZZ
jpa (x2;x; !)j2 q̂2s

c2�s
`3s

exp f�!2`2s= (4�u
2)g

[1 + !2� 2s (1� �u cos �=a1)]
dx2 (48)

In order to obtain a closed form result it is necessary to determine jpa (x2;x; !)j2. Since at
� = �=2 the e�ects of the mean 
ow are negligible, the equations for the adjoint functions

(31) to (34) may be reduced to a Helmholtz equation for the adjoint pressure,

r2pa + k2pa =
i!

2�c2o
Æ (x� x2) (49)

So that,

jpa (x2;x; !)j2 = !2

64�4c4ox
2

(50)
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Then, from equation (48), with � = �=2, we obtain

S (x; !) =

p
�

16�2�oc5ox
2

ZZZ
q̂2s
c2�s

`3s!
2 exp f�!2`2s= (4�u

2)g
(1 + !2� 2s )

dx2 (51)

With the scales given by Eqn. (23) and q̂2s=c
2 = 4A2�2sk

2=9, the contribution to the spectral

density from an elemental volume of the turbulence is given by,

dS (x; !) =

p
�

9�oc5ox
2

A2c3`
c3�

�2sk
7=2 (!=!s)

2

(1 + 4�2!2=!2
s)
exp

�
��2c2`

c2�

!2

!2
s

k

�u2

�
dV (52)

This is very nearly the same result as given by the Lighthill Acoustic Analogy in equation

(24) except for the frequency weighting function.

(!=!s)
2

(1 + 4�2!2=!2
s)
exp

�
��2c2`

c2�

!2

!2
s

k

�u2

�
(53)

Figure 3 shows a comparison between predictions based on Tam and Auriault's model and

experiments. The agreement between the predictions and measurement is excellent. This

excellent agreement follows that shown by Tam and Auriault1 for a very wide set of jet

operating conditions. The coeÆcients used in the present prediction based on Eqn. (52) are

c� = 0:308, c` = 0:130, and A = 0:773. These are similar to the coeÆcients determined by

Tam and Auriault1 . Also shown in Fig. 3 is a prediction of the spectral density based on the

coeÆcients determined by Tam and Auriault1 . It can be seen that their predicted spectral

density falls more rapidly at higher frequencies than the present predicted spectrum or the

measurements by Tanna et al.11 However, Tam and Auriault's predictions agree well with

measurements in other facilities. This shows how the values of the coeÆcients are in
uenced

by the choice of experimental data. However, for both sets of coeÆcients, the values are

arguably more reasonable than the value of c� obtained in Model I that was greater than

unity.
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4 Lighthill's Acoustic Analogy: Model II

In this section we will follow the same general approach used by Tam and Auriault:1 but,

here we apply the method to Lighthill's acoustic analogy equation. The starting point is

Eqn. (1). The Green's function is given by the solution of the equation

@2G

@t2
� c2o

@2G

@xi@xi
= Æ (x� x1) Æ (t� t1) (54)

We seek a periodic Green's function such that

G (x;x1; t; t1) =

1Z
�1

Ĝ (x;x1; !) exp [�i! (t� t1)] d! (55)

Then, the Fourier transform of equation (54) gives

�r2 + k2
�
Ĝ (x;x1; !) =

Æ (x� x1)

2�c2o
(56)

The adjoint function Ga (x;xs; !) now satis�es the equation,

�r2 + k2
�
Ga (x;xs; !) = �Æ (x� xs)

2�c2o
(57)

and it is readily shown that,

Ĝ (xs;x1; !) = Ga (x1;xs; !) (58)

Thus the far �eld density may be written

�0 (x; t) =

ZZZZZ
Ga (x1;x; !)

@2Tij
@x1i@x1j

(x1; t1) exp [�i! (t� t1)] d!dt1dx1 (59)
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The subsequent analysis is simpli�ed if the derivatives are transferred onto the adjoint func-

tion by integration by parts. That is,

�0 (x; t) =

ZZZZZ
@2Ga

@x1i@x1j
(x1;x; !)Tij (x1; t1) exp [�i! (t� t1)] d!dt1dx1 (60)

The spectral density for the intensity is de�ned by Eqn. (5) and is given by,

S (x;!) =
c3o
�o

ZZZ
� � �
ZZZ

@2Ga

@x1i@x1j
(x1;x; !1)

@2Ga

@x2k@x2`
(x2;x; !2) hTij (x1; t1)Tk` (x2; t2)i

� exp [�i!1 (t� t1)� i!2 (t� t2)] Æ (! � !2) d!1d!2dt1dt2dx1dx2 (61)

It is now assumed that the two point cross correlation of the Lighthill stress tensor in a �xed

frame of reference is given by,

hTij (x1; t1)Tk` (x2; t2)i = Aijk`�
2
su

4
s exp

�
� j�j
�u�s

� 1

`2s

�
(� � �u�)2 + �2 + �2

��
(62)

Then,

S (x;!) =
c3o
�o

ZZZ
� � �
ZZZ

@2Ga

@x1i@x1j
(x1;x; !1)

@2Ga

@x2k@x2`
(x2;x; !2)

�Aijk`�
2
su

4
s exp

��
�jx1 � x2j

�u�s
� 1

`2s
((x1 � x2)� �u (t1 � t2))

2

+(y1 � y2)
2 + (z1 � z2)

2�	
� exp [�i (!1 + !2) t+ i!1t1 + i!2t2] Æ (! � !2) d!1d!2dt1dt2dx1dx2 (63)

Again, following the sequence of integrations given by Tam and Auriault,1 we obtain,

S (x;!) = 2�
p
�
c3o
�o

ZZZZZZ
@2Ga

@x1i@x1j
(x1;x;�!) @2Ga

@x2k@x2`
(x2;x; !)Aijk`�

2
su

4
s

`s
�u

� exp

�
�!2`2s
4�u2

�
exp

�
� j�j
�u�s

� i!�

�u
� 1

`2s

�
�2 + �2

��
dx1dx2 (64)
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The solution to Eqn. (57) is

Ga (x1;x;�!) = � 1

8�2c2o

exp [ik jx1 � xj]
jx1 � xj (65)

It may be shown that as jx1 � xj ! 1,

@Ga

@x1i@x1j
(x1;x;�!) @Ga

@x2k@x2`
(x2;x; !) =

!4

64�4c8ox
2
�i�j�k�` exp

�
i! (x2 � x1) � x

xco

�
(66)

where �i = (x1i�xi)=x, etc. are direction cosines. Then, at � = �=2 where, (x2 � x1) �x=x �
0, the far �eld spectral density for the intensity may be written,

S (x;!) =

p
�

32�3

!4

�oc5ox
2

ZZZZZZ
A2222�

2
su

4
s

`s
�u

� exp

�
�!2`2s
4�u2

�
exp

�
� j�j
�u�s

� i!�

�u
� 1

`2s

�
�2 + �2

��
d�dx2 (67)

With A2222 = A2, and following the integrations with respect to �, we obtain

S (x;!) =

p
�

16�2

A2

�oc5ox
2

ZZZ
�2su

4
s`

3
s

� 3s

(!�s)
4

[1 + !2� 2s ]
exp

�
�!2`2s
4�u2

�
dx2 (68)

Using the scales de�ned by Eqn. (23) and with us =
p
2k=3, the contribution to the spectral

density from each volume element of the 
ow may be written,

dS (x;!) =
�2
p
�

9�oc5ox
2

A2c3`
c3�

�2sk
7=2 (!=!s)

4

(1 + 4�2!2=!2
s)
exp

�
��2c2`

c2�

!2

4!2
s

k

�u2

�
dV (69)

This is essentially the same result obtained from Tam and Auriault's model1 except for the

slight but signi�cant change in the frequency weighting factor

(!=!s)
4

(1 + 4�2!2=!2
s)
exp

�
��2c2`

c2�

!2

4!2
s

k

�u2

�
(70)

20



Figure 4 shows a comparison of predictions made with all three models with experimental

data. The coeÆcients used in the Model II prediction are, c� = 1:0, c` = 0:78, and A =

0:8475. Clearly, the Model II prediction is an improvement over that made with the Model

I version based on the acoustic analogy. Some of this is due to the additional freedom to

specify three independent coeÆcients unlike the two available for Model I. However, the

shape of the spectrum is still not as well predicted as that given by Tam and Auriault's

model1 for the same level of empiricism.

In the next section, we consider the �nal di�erence between the various models: the

speci�cation of the turbulent source statistics.

5 Models for the Turbulent Source Statistics

In the previous sections it was shown how a model based on the acoustic analogy failed

to provide as good a set of noise predictions as the Tam and Auriault model1 even when

the problems were formulated in the same manner. However, there remains one issue to

be considered: how the statistics of the turbulent sources are described. Tam and Auriault

model the source statistics with Eqn. (43) whereas the model of the last section used Eqn.

(62). In the former case it is assumed that the cross correlation of the convective derivative

of the source term follows the experimentally measured cross correlation of the axial velocity


uctuations in the jet. In the latter case, it is assumed that it is the cross correlation of

the Lighthill stress tensor that follows the measured form. In this section the two prediction

schemes are compared when consistent forms of the statistics of the turbulent source are

used.

There are two ways to modify Tam and Auriault's model1 to make their assumptions

consistent with Model II. The �rst is to retain the convective derivative operators on the

adjoint solution in Eqn. (38). Once the form of the adjoint solution is obtained, the operators

may be applied in a straightforward manner. However, in the general case, when the adjoint
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solution is obtained numerically, it is as convenient to still perform the integration by parts

and use the form for the spectral density given by Eqn. (42). However, it is now assumed

that the cross correlation of the source function may be written,

hqs (x1; t1) qs (x2; t2)i = q̂2s
c2

exp

�
� j�j
�u�s

� 1

`2s

�
(� � �u�)2 + �2 + �2

��
(71)

This is consistent with the assumption made in Eqn. (62) for Model II based on the acoustic

analogy. The cross correlation required in Eqn. (42) is,

�
Dqs
Dt1

(x1; t1)
Dqs
Dt2

(x2; t2)

�
=

D2

Dt1Dt2
hqs (x1; t1) qs (x2; t2)i (72)

The derivatives may be written in terms of the time delay � and the axial spatial separation

distance � such that,

D2

Dt1Dt2
� �

�
@

@�
+ �u

@

@�

�2

(73)

Now, if

f = f (� � �u�) then

�
@

@�
+ �u

@

@�

�
f = 0 (74)

Thus,

�
Dqs
Dt1

(x1; t1)
Dqs
Dt2

(x2; t2)

�
� � q̂2s

c2
�u2 exp

�
� 1

`2s

�
(� � �u�)2 + �2 + �2

��

� @2

@�2

�
exp

�
� j�j
�u�s

��
(75)

If this result is substituted into Eqn. (42) and the integrations with respect to !1, !2; t1 and

22



t2 are performed, we obtain,

S (x; !) = �2�
p
�

�oco

ZZZZZZ
pa (x1;x;�!) pa (x2;x; !)

q̂2s
c2
`s�u

� exp

�
�!2`2s
4�u2

�
exp

�
� 1

`2s

�
�2 + �2

��

� @2

@�2

�
exp

�
� j�j
�u�s

��
exp

�
�i!�

�u

�
dx1dx2 (76)

The adjoint solutions may be replaced by the form given by Eqn. (50). Then the integrations

with respect to x1 may be replaced by integrations with respect to �. The integrations with

respect to � and � are readily performed as before. However, the integration with respect to

� now takes the form,

I =

1Z
�1

@2

@�2

�
exp

�
� j�j
�u�s

��
exp

�
�i!�

�u

�
d� (77)

This integral may be rewritten in terms of a new variable z = �= (�u�s), such that,

I =
1

�u�s

1Z
�1

@2

@z2
[exp (� jzj)] exp (�i!�sz) dz (78)

Since the �rst term in the integrand must be treated as a generalized function, due to its

discontinuous behavior at � = 0, integration by parts should be performed before the integral

may be evaluated. This is discussed in more detail in an Appendix to this paper. This gives,

I =
1

�u�s

1Z
�1

exp (� jzj) @2

@z2
[exp (�i!�sz)] dz (79)

= �!2�s
�u

1Z
�1

exp (� jzj � i!�sz) dz (80)

The integral may now be evaluated by separating the integral into the contribution from
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�1 < � < 0 and that from 0 < � <1. This yields,

I = � 2!2�s
�u (1 + !2� 2s )

(81)

The use of Eqn. (50) for the magnitude of the adjoint pressure then gives the �nal result for

the spectral density,

S (x; !) =

p
�

16�2

1

�oc5ox
2

ZZZ
q̂2s`

3
s

c2� 3s

(!�s)
4

(1 + !2� 2s )
exp

�
�!2`2s
4�u2

�
dx2 (82)

If q̂2s=c
2 is set equal to A2�2su

4
s this is exactly the result given by Eqn. (68) for Model II based

on the acoustic analogy described in the previous section.

Thus it may be stated that: both Model II based on the acoustic analogy and Tam and

Auriault's model1 yield identical noise prediction formulas at 90 degrees to the jet axis if

consistent assumptions are made in the statistical description of the turbulent sources.

6 Discussion

In the previous section it was shown that both a model based on an acoustic analogy and Tam

and Auriault's model1 yield identical noise prediction formulas if consistent assumptions are

made concerning the statistical description of the turbulent noise sources. This might appear

to be a somewhat negative result, as it shows that the recent model by Tam and Auriault1

would give as poor a prediction as models based on the acoustic analogy for the same source

description. However, it could be viewed as providing guidance on what assumptions should

be made in the source description if good predictions are to be made. One could obtain

a noise prediction formula identical to that given by Tam and Auriault1 in Eqn. (52) in a

number of ways. For example, only two of the spatial derivatives acting on the Lighthill

source term correlation in Eqn. (59) need to be transferred to the Green's functions. Then

an assumption could be made that the two-point cross correlation of the new \source" term
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is given by

�
@Tij
@xi

(x1; t1)
@Tk`
@xk

(x2; t2)

�
= Ajk

�2su
4
s

`2s
exp

�
� j�j
�u�s

� 1

`2s

�
(� � �u�)2 + �2 + �2

��
(83)

However, this is just as arbitrary an assumption as that made by Tam and Auriault1 in

proposing the form of two-point cross correlation given by Eqn. (43). Alternatively, we need

to �nd a form of two-point cross correlation function for the Lighthill stress tensor that would

give the form assumed by Tam and Auriault1 when the convective derivative operations are

applied, as in Eqn. (72). This is no easy matter because of the discontinuous derivative of

the assumed correlation at � = 0. However, as noted by one reviewer, j�j could be replaced

by
p
�2 + Æ2 and letting Æ ! 0 in the �nal result.

In the remainder of this �nal section we propose an acoustic analogy formulation that

includes, as a part, the source description proposed by Tam and Auriault1 : but, it also

identi�es other physical mechanisms that are equally good candidates for noise sources.

Other formulations of this type could be proposed: however, our formulation is based on

equations of motion written in terms of the logarithm of the pressure.

The equations of continuity, momentum and energy, and the equation of state for a

perfect gas, may be rearranged in the form,

D�

Dt
= �@ui

@xi
(84)

and

Dui
Dt

= �c2 @�
@xi

(85)

where

� =
1



ln

�
p

po

�
; (86)
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D

Dt
� @

@t
+ uj

@

@xj
(87)

and po is the mean static pressure that is assumed to constant. Equations (84) and (85) may

be recast in the form of a third-order equation [Lilley,9 Colonius et al.15],

D

Dt

�
D2�

Dt2
� @

@xi

�
c2
@�

@xi

��
� 2

@ui
@xj

�
@

@xj

�
c2
@�

@xi

��
= 2

@uj
@xi

@uk
@xj

@ui
@xk

(88)

If the variables in this equation are linearized about the mean thermodynamic properties

and a parallel mean 
ow, given by,

u (x; t) = U (x2; x3) Æi1 + u0i (x; t) (89)

Lilley's equation9 may be obtained in the form

Do

Dt

�
D2

o�
0

Dt2
� @

@xi

�
c2
@�0

@xi

��
+ 2c2

�
dU

dx2

@2�0

@x1@x2
+

dU

dx3

@2�0

@x1@x3

�
= � (90)

A detailed expansion of � is given by Colonius et al.15 All terms in � are at least second

order in the 
uctuations. In the limit of in�nitesimal disturbances the equation reduces to

a homogeneous equation that describes the propagation of sound in a parallel shear 
ow,

such as that developed by Pridmore-Brown.16 Also, as noted by Colonius et al.,15 it is in the

form of an acoustic analogy since it is equivalent to the equation that describes the pressure


uctuations generated by an external distribution of stresses (and other source terms that

are often neglected) imposed on a parallel shear 
ow.

Alternatively an acoustic analogy could be equally well formed by simply splitting the

variables in Eqns. (84) and (85) into their mean and 
uctuating components, assuming a

parallel mean 
ow, and retaining only linear terms on the left hand side of the equation.
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This yields,

Do�
0

Dt
+

@u0i
@xi

= �w00 (91)

and

Dou
0

i

Dt
+

�
dU

dx2
u02 +

dU

dx3
u03

�
Æi1 + c2

@�0

@xi
= �f 00i (92)

with

Do

Dt
� @

@t
+ U

@

@x1
(93)

and

w00 = u0j
@�0

@xj
and f 00i = u0j

@u0i
@xj

+ c2
0 @�0

@xi
(94)

The double prime notation is used to denote terms that are second order in the 
uctuations.

The term w00 represents the net rate of work done at second order by the 
uctuating pressure

on a 
uid element. The term f 00i is the same as that obtained by Goldstein,17 being equivalent

to an externally applied force per unit mass acting on a parallel sheared mean 
ow. This

term may also be written,

f 00i = �"ijku0j!0

k +
@

@xi

�
u0ju

0

j

2

�
+ c2

0 @�0

@xi
(95)

where "ijk is the alternating tensor and !0

k is the vorticity tensor. The �rst term in the total


uctuating force (per unit mass) is called the \vortex force" (also written in vector notation

as u0 � !0). It is associated with the transport of rotating 
uid elements by the 
uctuating

velocity �eld. The second term is the force generated by the second order dynamic head. It

should be noted that this term is essentially the same single source term proposed by Tam and
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Auriault.1 The last term in Eqn. (95) is a source associated with temperature 
uctuations in

the turbulent 
ow as discussed by Tester and Morfey.18 Note that c2
0

= 
RT 0. This source

term is an important component of the semi-empirical noise prediction model developed by

Morfey et al.19 This last term appears as a source in the framework of an acoustic analogy.

However, it is readily identi�ed as the e�ect of sound propagation through a medium with a


uctuating speed of sound.

Equations (91) and (92) could be rearranged into a single inhomogeneous equation for

�0, exactly in the form of Eqn. (90). However, in their unmanipulated form it is easier to see

the equivalent sources in the momentum and energy equations. The source term �, given by

Colonius et al.,15 is reproduced exactly by this rearrangement 1. (To obtain the form given

by Colonius et al.,15 the source associated with speed of sound 
uctuations is neglected as

are third and higher order terms.) The complexity of � is formidable. In its simpli�ed form,

� � Do

Dt

�
@u0iu

0

j

@xi@xj

�
� 2

�
dU

dx2

@u02u
0

j

@x1@xj
+

dU

dx3

@u03u
0

j

@x1@xj

�
(96)

This has been interpreted as a quadrupole source distribution with components referred to

as self- and shear-noise. However, the form of source term given by Eqn. (96) is simply

the result of recasting the original inhomogeneous, linearized Euler equations given by Eqns.

(91) and (92). In that primitive form there is no source term, or by inference, no source

mechanism, associated with the mean velocity gradient, or any other mean 
ow property. All

equivalent source terms are second order in the 
uctuations only. In summary, the acoustic

analogy formed by Eqns. (91) and (92) describes acoustic radiation from a sheared mean


ow due to externally-applied forces and work performed on the 
uid.

Since the source terms on the right hand sides of Eqns. (91) and (92) are not all in

1There appears to be a minor typographical error in the �nal source term component Vb, that should be

@�0

@x1

�
u
0
i

@u0
2

@xi

�
+ u

0
2

@

@x1

�
u
0
i

@�0

@xi

�
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the form of the divergence of a scalar, as in Tam and Auriault's model,1 it is not possible

to follow the simplifying analysis of Eqns. (35) to (40). In addition, since there is more

than one source term, their correlation must be considered when the autocorrelation of the

far �eld pressure is formed. Previous analyses have considered each source mechanism to

be statistically independent and that approach, though somewhat questionable, could be

followed.

The scaling of the source terms, based on the CFD solution, may also be addressed. The

�rst two components of f 00i of Eqn. (95) should be scaled by

k=`s (97)

The last term should be scaled by

(Ts � To)

To

�s
�o

k

`s
(98)

where, Ts is the mean temperature in the source volume element. It should be noted that this

is only distinguished from the scaling for the �rst source terms (or the source term in Tam

and Auriault's model1) by the local relative temperature di�erence. Finally, the unsteady

work source term in Eqn. (91) should scale with

1

c2o

�s
�o

k3=2

`s
(99)

There are several issues that remain to be addressed. Though the present paper has

considered the noise radiation at 90o to the jet axis, so that mean 
ow/acoustic interaction

e�ects may be neglected, there are distinct di�erences between the traditional (Model I)

formulation and Tam and Auriault's model1 at other angles to the jet axis. In the latter
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model, the variation of spectral density with polar angle is contained in the factor

jpa (x2; x; !)j2�
1 + (!2=!2

s) (1� �u cos �=co)
2� (100)

Away from the zone of silence there is little angular variation in jpa (x2; x; !)j at a given

frequency as shown by Tam and Auriault.14 The factor in the denominator in Eqn. (100) is

a very weak function of polar angle. For example, with �u=co = 1:0 there is only a 2 decibel

change in the spectral density for !=!s = 1:0 and � = 60o relative to the value at 90o. This

is consistent with the experimental spectra shown by Tam and Auriault.14 However, the

traditional models based on Lighthill's acoustic analogy suggest a directivity that varies as

(1�Mc cos �)
�5. If we let Mc = 0:62Uj=co (Goldstein

7) then a relative change of 8 decibels

is predicted for the same conditions. This is much greater than the measured variation. Fur-

ther analysis by Goldstein7 to include the mean 
ow e�ects changes the convection factor

from (1�Mc cos �)
�5 to (1�Mc cos �)

�3. This results in predictions for the directivity of

the overall intensity in better agreement with experiment. In addition, in traditional models

based on the acoustic analogy, there is no separation of source mechanisms between con-

tributions from small-scale or large-scale turbulence. So predictions are made at all polar

angles for the same assumed source. Whereas, in Tam and Auriault's model,14 predictions

are limited to angles approximately greater than 60o to the jet downstream axis. Closer to

the jet axis Tam and Auriault argue that a noise mechanism associated with the large-scale

turbulence is present. It should be noted that Model II based on the acoustic analogy, de-

scribed in Section 4, gives a convection factor identical to that of Tam and Auriault. The

reason for the di�erence is tied to the choice of two-point cross correlation factor for the

sources. In Model I the form of the cross correlation is assumed in a moving frame of ref-

erence. Whereas, in Model II, the form of the cross correlation is assumed in a reference

frame �xed to the jet nozzle. The fact that the two models give di�erent convection fac-

tors indicates that one or other of the assumed forms is incorrect or insuÆciently accurate.
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The moving and �xed reference frame cross correlations are related simply by a coordinate

transformation. So consistent choices are possible and the �nal result must be independent

of the reference frame. It is readily shown that the usual Gaussian form of cross correlation

in the moving frame gives a �xed frame correlation that is consistent with Eqn. (71) and

measurements. Since, as noted above, the temporal variations of the sources that determine

the sound radiation are more clearly identi�able in a moving reference frame, it appears to

be the appropriate choice: and with its selection comes convective ampli�cation. Finally it

should be noted that the measured two-point correlations should contain contributions from

both the large-scale and small-scale turbulence. The wavenumber/frequency spectrum that

provides the distinction between radiating and non-radiating components of the turbulent

�eld [see Eqn. (17)] should be able to describe both components if it is chosen appropriately.

The extraction of two-point correlations from either experimental or simulation data for

high speed jets, where it known that the instability wave radiation is present, would be very

illuminating. Thus, the issues of the appropriate convection factor and the separate contri-

butions, if they are separate, of the small-scale and large-scale noise generation mechanisms

remain open questions.

In this paper we have tried to reconcile the apparent di�erences between models based

on the acoustic analogy and alternative models. We have shown that there is no di�erence

in the eventual noise prediction formulas if consistent assumptions are made concerning the

statistical properties of the turbulent noise sources. We have also proposed an acoustic

analogy that provides a clear representation of equivalent source mechanisms. We have

also tried to identify some of the remaining issues that have yet to be resolved and have

proposed measurements or simulations that would help to resolve these issues. The recent

reexamination of models based on the acoustic analogy, much of it prompted by the success

of the model proposed by Tam and Auriault1 has been very valuable. The authors hope that

this paper will stimulate further work that will result in an improved understanding of how

to predict radiated noise using CFD simulations.
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7 Appendix. The Use of Generalized Di�erentiation

in the Algebraic Manipulation of Equation (78)

Consider the following integral depending on the variable y and a real variable �

f (y) =

1Z
�1

exp (� jx� yj+ i�x) dx (101)

=
2 exp (i�y)

1 + �2
(102)

It is clear that the second derivative of the function on the left hand side of Eqn. (102) is

d2f

dy2
(y) = �2�2 exp (i�y)

1 + �2
(103)

If we di�erentiate Eqn. (101) with respect to the variable y we obtain

1Z
�1

d2

dy2
fexp (� jx� yj+ i�x)g dx (104)

It might appear to be possible to split this integral into two parts giving,

yZ
�1

d2

dy2
fexp (x� y + i�x)g dx+

1Z
y

d2

dy2
fexp (�x + y + i�x)g dx =

2 exp (i�y)

1 + �2
(105)

This does not agree with the result given by Eqn. (103). To determine why this is we

note that the second derivative of the function exp (� jx� yj) is discontinuous at x = y and

thus taking the second derivative inside the integral is not valid. We should have kept the

derivatives outside the integral, split the range of integration, and then used the Leibniz rule
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of di�erentiation under the integral sign twice to get,

d2

dy2

1Z
�1

exp (� jx� yj+ i�x) dx

=
d2

dy2

8<
:

yZ
�1

exp (x� y + i�x) dx+

1Z
y

exp (�x + y + i�x) dx

9=
;

= �2�2 exp (i�y)

1 + �2
(106)

We have obtained the correct result but only at the expense of more algebraic manipulations.

We want to be able to obtain the correct result when we change the order of di�erentiation

and integration without the added burden of book-keeping when our integrand is discontin-

uous. This can be achieved as follows.

It is seen that f (y) is an analytic function. This means that ordinary and generalized

derivatives of this function are identical. However, we can exchange the order of integration

and generalized di�erentiation. Using a bar over the di�erentiation sign to denote generalized

di�erentiation, we have now the following mathematically correct manipulation:

d2f

dy2
(y) =

1Z
�1

�d2

dy2
fexp (� jx� yj+ i�x)g dx

=

1Z
�1

�d2

dx2
fexp� jx� yjg ei�xdx

=

1Z
�1

exp� jx� yj
�d2

dx2
�
ei�x

	
dx

= �2�2 exp (i�y)

1 + �2
(107)

So we have obtained the same result as Eqn. (103).

In this paper we have obtained an equation similar to Eqn. (104) and then we claimed

that the second derivative with respect to the variable y must be treated as a generalized
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derivative. The purpose of this appendix is to justify this claim. The root of the problem in

Eqn. (104) is that the interchange of the order of limit operations of integration and ordinary

di�erentiation is not permissible because of the discontinuity of the second derivative of the

integrand at x = y. However, in this paper, we have freely interchanged the order of

integration and ordinary di�erentiation without any attempt at justi�cation. For example,

consider the derivation of the relation,

�
@2Txx
@t2

(y1; t1)
@2Txx
@t2

(y2; t2)

�
=

@4

@� 4
hTxx (y1; t)Txx (y2; �o)i (108)

�o = t + � +
x

x
� (y2 � y1)

co
(109)

This is necessary in proceeding from Eqn. (6) to Eqn. (9) in the paper. We have performed

two integrations by parts with respect to t, replaced the fourth order di�erentiation with

respect to t with the same order di�erentiation with respect to � , and then we exchanged the

order of di�erentiation with the integration for time averaging (see Goldstein,7 Appendix 2).

These operations can only be justi�ed for integrands whose derivatives are continuous. More

precisely, the uniform convergence of the integrals must be considered. As has happened

in this paper, we may next introduce an algebraic expression for the statistical properties

of the turbulence and perform algebraic manipulations that involve bringing into integrals

derivatives of some order of a variable. We can do this easily and without the burden of

the detailed analysis of classical calculus, exhibited in the manipulations of Eqn. (106), if

we treat all derivatives from the start as generalized derivatives. Practically all the analysis

remains the same except in situations like the exchange of the order of limit operations

where we must indicate generalized di�erentiation explicitly as we have done here. The

situation is completely analogous to linear aerodynamic theory where occasionally we have

to interpret divergent integrals as the �nite part of divergent integrals. The reason is that

divergent integrals appear if improper exchange of the order of di�erentiation and integration

is performed. The �nite part procedure gives the same result as if the derivative was kept
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outside the integral. The procedure itself is obtained by assuming that the derivative is a

generalized derivative and can, therefore, be taken inside the integral and interpreted by the

rules of generalized function theory.

Readers should consult Canonical Regularization in Gelfand and Shilov,20 for the theo-

retical background relevant to the subject of this appendix.
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Figure 2: Prediction of Spectral Density at 90o to the Jet Axis Using Model I Based on the
Acoustic Analogy Showing the Contribution to the Spectrum in One Diameter Slices. The
Contributions From Slices for the First Twenty Diameters are Shown in Alternating Solid
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Figure 3: Comparison With Experimental Data of the Predicted Spectral Density at 90o to
the Jet Axis Using Tam and Auriault's Model.1 x = 72Dj, Mj = 0:911, Tj=To = 0:975,
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Figure 4: Comparison With Experimental Data of the Predicted Spectral Density at 90o to
the Jet Axis Using Models I and II Based on the Acoustic Analogy and Tam and Auriault's
Model.1 x = 72Dj, Mj = 0:911, Tj=To = 0:975, Dj = 0:0508 m. 
|||
, Model I;
4|||4, Model II; 2|||2, Tam and Auriault's Model; � , Experiment, Tanna et al.
11

42


